Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: covidwho-1637017

RESUMEN

Malignant melanoma is still a serious medical problem. Relatively high mortality, a still-growing number of newly diagnosed cases, and insufficiently effective methods of therapy necessitate melanoma research. Tetracyclines are compounds with pleiotropic pharmacological properties. Previously published studies on melanotic melanoma cells ascertained that minocycline and doxycycline exerted an anti-melanoma effect. The purpose of the study was to assess the anti-melanoma potential and mechanisms of action of minocycline and doxycycline using A375 and C32 human amelanotic melanoma cell lines. The obtained results indicate that the tested drugs inhibited proliferation, decreased cell viability, and induced apoptosis in amelanotic melanoma cells. The treatment caused changes in the cell cycle profile and decreased the intracellular level of reduced thiols and mitochondrial membrane potential. The exposure of A375 and C32 cells to minocycline and doxycycline triggered the release of cytochrome c and activated initiator and effector caspases. The anti-melanoma effect of analyzed drugs appeared to be related to the up-regulation of ERK1/2 and MITF. Moreover, it was noticed that minocycline and doxycycline increased the level of LC3A/B, an autophagy marker, in A375 cells. In summary, the study showed the pleiotropic anti-cancer action of minocycline and doxycycline against amelanotic melanoma cells. Considering all results, it could be concluded that doxycycline was a more potent drug than minocycline.


Asunto(s)
Antineoplásicos/farmacología , Doxiciclina/farmacología , Minociclina/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Biomarcadores de Tumor , Caspasas/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Melanoma Amelanótico , Potencial de la Membrana Mitocondrial/efectos de los fármacos
2.
Molecules ; 26(21)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: covidwho-1512508

RESUMEN

As cancer remains one of the major health burdens worldwide, novel agents, due to the development of resistance, are needed. In this work, we designed and synthesized harmirins, which are hybrid compounds comprising harmine and coumarin scaffolds, evaluated their antiproliferative activity, and conducted cell localization and cell cycle analysis experiments. Harmirins were prepared from the corresponding alkynes and azides under mild reaction conditions using Cu(I) catalyzed azide-alkyne cycloaddition, leading to the formation of the 1H-1,2,3-triazole ring. Antiproliferative activity of harmirins was evaluated in vitro against four human cancer cell lines (MCF-7, HCT116, SW620, and HepG2) and one human non-cancer cell line (HEK293T). The most pronounced activities were exerted against MCF-7 and HCT116 cell lines (IC50 in the single-digit micromolar range), while the most selective harmirins were 5b and 12b, substituted at C-3 and O-7 of the ß-carboline core and bearing methyl substituent at position 6 of the coumarin ring (SIs > 7.2). Further experiments demonstrated that harmirin 12b is localized exclusively in the cytoplasm. In addition, it induced a strong G1 arrest and reduced the percentage of cells in the S phase, suggesting that it might exert its antiproliferative activity through inhibition of DNA synthesis, rather than DNA damage. In conclusion, harmirin 12b is a novel harmine and coumarin hybrid with significant antiproliferative activity and warrants further evaluation as a potential anticancer agent.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Cumarinas/química , Harmina/síntesis química , Harmina/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Técnicas de Química Sintética , Relación Dosis-Respuesta a Droga , Harmina/análogos & derivados , Humanos , Estructura Molecular
3.
Molecules ; 26(21)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: covidwho-1512506

RESUMEN

Three silver(I) dipeptide complexes [Ag(GlyGly)]n(NO3)n (AgGlyGly), [Ag2(GlyAla)(NO3)2]n (AgGlyAla) and [Ag2(HGlyAsp)(NO3)]n (AgGlyAsp) were prepared, investigated and characterized by vibrational spectroscopy (mid-IR), elemental and thermogravimetric analysis and mass spectrometry. For AgGlyGly, X-ray crystallography was also performed. Their stability in biological testing media was verified by time-dependent NMR measurements. Their in vitro antimicrobial activity was evaluated against selected pathogenic microorganisms. Moreover, the influence of silver(I) dipeptide complexes on microbial film formation was described. Further, the cytotoxicity of the complexes against selected cancer cells (BLM, MDA-MB-231, HeLa, HCT116, MCF-7 and Jurkat) and fibroblasts (BJ-5ta) using a colorimetric MTS assay was tested, and the selectivity index (SI) was identified. The mechanism of action of Ag(I) dipeptide complexes was elucidated and discussed by the study in terms of their binding affinity toward the CT DNA, the ability to cleave the DNA and the ability to influence numbers of cells within each cell cycle phase. The new silver(I) dipeptide complexes are able to bind into DNA by noncovalent interaction, and the topoisomerase I inhibition study showed that the studied complexes inhibit its activity at a concentration of 15 µM.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Dipéptidos/química , Plata/química , Antiinfecciosos/síntesis química , Antineoplásicos/síntesis química , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Fenómenos Químicos , Técnicas de Química Sintética , Complejos de Coordinación/síntesis química , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Estabilidad de Medicamentos , Humanos , Conformación Molecular , Simulación de Dinámica Molecular , Análisis Espectral , Relación Estructura-Actividad , Termogravimetría
4.
Cells ; 10(11)2021 10 29.
Artículo en Inglés | MEDLINE | ID: covidwho-1488496

RESUMEN

Human coronavirus (HCoV) similar to other viruses rely on host cell machinery for both replication and to spread. The p97/VCP ATPase is associated with diverse pathways that may favor HCoV replication. In this study, we assessed the role of p97 and associated host responses in human lung cell line H1299 after HCoV-229E or HCoV-OC43 infection. Inhibition of p97 function by small molecule inhibitors shows antiviral activity, particularly at early stages of the virus life cycle, during virus uncoating and viral RNA replication. Importantly, p97 activity inhibition protects human cells against HCoV-induced cytopathic effects. The p97 knockdown also inhibits viral production in infected cells. Unbiased quantitative proteomics analyses reveal that HCoV-OC43 infection resulted in proteome changes enriched in cellular senescence and DNA repair during virus replication. Further analysis of protein changes between infected cells with control and p97 shRNA identifies cell cycle pathways for both HCoV-229E and HCoV-OC43 infection. Together, our data indicate a role for the essential host protein p97 in supporting HCoV replication, suggesting that p97 is a therapeutic target to treat HCoV infection.


Asunto(s)
Coronavirus Humano 229E/fisiología , Coronavirus Humano OC43/fisiología , Proteína que Contiene Valosina/metabolismo , Replicación Viral/fisiología , Antivirales/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular , Coronavirus Humano 229E/efectos de los fármacos , Coronavirus Humano OC43/efectos de los fármacos , Efecto Citopatogénico Viral/efectos de los fármacos , Humanos , Proteoma/efectos de los fármacos , Proteoma/metabolismo , ARN Interferente Pequeño/genética , ARN Viral/biosíntesis , Proteína que Contiene Valosina/antagonistas & inhibidores , Proteína que Contiene Valosina/genética , Replicación Viral/efectos de los fármacos , Desencapsidación Viral/efectos de los fármacos
5.
Biomolecules ; 11(7)2021 07 16.
Artículo en Inglés | MEDLINE | ID: covidwho-1323103

RESUMEN

Cyclooxygenase-2 (COX-2) is an important enzyme involved in prostaglandins biosynthesis from arachidonic acid. COX-2 is frequently overexpressed in human cancers and plays a major tumor promoting function. Accordingly, many efforts have been devoted to efficiently target the catalytic site of this enzyme in cancer cells, by using COX-2 specific inhibitors such as celecoxib. However, despite their potent anti-tumor properties, the myriad of detrimental effects associated to the chronic inhibition of COX-2 in healthy tissues, has considerably limited their use in clinic. In addition, increasing evidence indicate that these anti-cancerous properties are not strictly dependent on the inhibition of the catalytic site. These findings have led to the development of non-active COX-2 inhibitors analogues aiming at preserving the antitumor effects of COX-2 inhibitors without their side effects. Among them, two celecoxib derivatives, 2,5-Dimethyl-Celecoxib and OSU-03012, have been developed and suggested for the treatment of viral (e.g., recently SARS-CoV-2), inflammatory, metabolic diseases and cancers. These molecules display stronger anti-tumor properties than celecoxib and thus may represent promising anti-cancer molecules. In this review, we discuss the impact of these two analogues on cancerous processes but also their potential for cancer treatment alone or in combination with existing approaches.


Asunto(s)
Antineoplásicos/uso terapéutico , Celecoxib/uso terapéutico , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Neoplasias/tratamiento farmacológico , Pirazoles/uso terapéutico , Sulfonamidas/uso terapéutico , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/química , Antineoplásicos/farmacología , Celecoxib/efectos adversos , Celecoxib/análogos & derivados , Celecoxib/farmacología , Ciclo Celular/efectos de los fármacos , Inhibidores de la Ciclooxigenasa 2/efectos adversos , Inhibidores de la Ciclooxigenasa 2/química , Inhibidores de la Ciclooxigenasa 2/farmacología , Humanos , Pirazoles/efectos adversos , Pirazoles/química , Pirazoles/farmacología , Sulfonamidas/efectos adversos , Sulfonamidas/química , Sulfonamidas/farmacología
6.
Cell Cycle ; 20(2): 143-153, 2021 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1003451

RESUMEN

To date, proposed therapies and antiviral drugs have been failed to cure coronavirus disease 2019 (COVID-19) patients. However, at least two drug companies have applied for emergency use authorization with the United States Food and Drug Administration for their coronavirus vaccine candidates and several other vaccines are in various stages of development to determine safety and efficacy. Recently, some studies have shown the role of different human and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) microRNAs (miRNAs) in the pathophysiology of COVID-19. miRNAs are non-coding single-stranded RNAs, which are involved in several physiological and pathological conditions, such as cell proliferation, differentiation, and metabolism. They act as negative regulators of protein synthesis through binding to the 3' untranslated region (3' UTR) of the complementary target mRNA, leading to mRNA degradation or inhibition. The databases of Google Scholar, Scopus, PubMed, and Web of Science were searched for literature regarding the importance of miRNAs in the SARS-CoV-2 life cycle, pathogenesis, and genomic mutations. Furthermore, promising miRNAs as a biomarker or antiviral agent in COVID-19 therapy are reviewed.


Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , COVID-19/genética , MicroARNs/administración & dosificación , Mutación/genética , SARS-CoV-2/efectos de los fármacos , Animales , Antivirales/farmacología , Biomarcadores/metabolismo , COVID-19/metabolismo , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/metabolismo , Ciclo Celular/efectos de los fármacos , Ciclo Celular/fisiología , Humanos , MicroARNs/metabolismo , SARS-CoV-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA